追蹤

馬里克

FB : Mailk 闖中國

【小米實習 】 思維轉變-互聯網不能不知


我相信不論是因為工作、實習或是學習的過程中,我們的思維模式都會不斷的變化,而實際中我認為需要具備的幾種思維模式為以下幾種:

1.分類思維(具有數據的情況下)

      其實往往我們已經具備這一種思維模式,畢竟工作上我們會將客戶分群、產品歸類、市場分級,也會有所謂的績效評價...許多事情其實都需要具備分類思維。尤其是現在數據的發達與運用,對於較大的數據通常可通過機器學習算法來做分類(k-means or 隨機森林),上面兩種都是分類常用的方法,但是有差別,差別就在於有沒有標籤,其實嚴格說起來,k-means屬於聚類的一種,簡單理解就是先將一群東西隨機分成幾堆,在開始找一群一群彼此間的關係,之後給予他們標籤,而隨機森林(決策數)就像是已經直接分類,屬於哪一群的就會直接被分配到哪裡去~(這邊對於非資工或是統計相關科系的可能就聽不懂了,所以我也不說下去),但是這之後在工作中其實會滿常用到的。

      但其實關鍵點在於,分類後的事物,需要在核心指標上能拉開距離!也就是說分類後的結果,必須是顯著的。就像上面那一張圖,橫軸和縱軸往往是你營運當中所關注的核心指標(當然不只限於二維模式),而分類後的對象,你能看的出來他們的分佈不是隨機的,而是有顯著的集群的傾向。

*舉個例子:假設上圖反映了某個消費者分群的結果,橫軸代表購買頻率,縱軸代表客單價,那麼綠色的這群人,就是明顯的人傻錢多”的“剁手金牌客戶”,也會是我們的目標族群。

2.矩陣化思惟(不須具有數據的情況下)

      它不再局限於用量化指標來進行分類。我相信大多數的時候,我們沒有數據做為支持,畢竟不是每一間公司都具有雄厚的資本,可以買到或是獲得有用的數據,所以大多時候我們只能通過經驗,也就是把某些重要因素組合成矩陣,大致定義出好壞的方向,然後進行分析。這也是我在小米實習中所提到的“波士頓矩陣”,我認為之後出去工作會經常用到這一個模型,大家可以參考他原本模型的應用(百度案例),我也是因為這一個模型所以常常可以說服公司同事,對於一些商品的在網頁上擺放的位子,畢竟網頁空間是有限的,所以必須把每一個空間發輝到最大化。

3.漏斗思維

      我第一次接觸到這一個思維模式是在上電子商務的課程,而這種思維方式被普及應用在註冊轉化、購買流程、銷售管道、瀏覽路徑等,太多的分析場景中,能找到這種思維的影子(大家可以看看我去面試人人貸時候的文章,我在面試的時候被問了這一個問題,所以如果要面試類似的職位時,建議回答時可以展現自己這一方面的知識),但往往這一些看上去越是普通越是容易理解的模型,它的應用卻要更加謹慎和小心(不懂不要裝懂,不然到時候會被同事或是面試官嘲笑),在漏斗思維當中,最需要注意的就是漏斗的長度

     漏斗該從哪里開始到哪里結束?根據我自己的經驗還有看了一些案例,漏斗的環節最好不該超過5個,而且漏斗中各環節的百分比數值,量級不要超過100倍(漏斗第一環節如果是從100%開始,到最後一個環節的轉化率數值不要低於1%)。若超過了我們假設的這兩個數值標準,建議分為多個漏斗進行觀察。這兩個值都是經驗數值,僅僅給各位朋友們做個參考~

*而我會這樣說的理由是什麼,是因為超過5個環節,往往會出現多個重點環節,那麼在一個漏斗模型中分析多個重要問題容易產生混亂。數值量級差距過大,數值間波動相互關係很難被察覺,容易遺漏資訊比如,漏斗前面環節從60%變到50%,讓你感覺是天大的事情,而漏斗最後環節0.1%的變動不能引起你的注意,可往往是漏斗最後這0.1%的變動非常致命。

 

小米實習 你不知道的事 part1

https://www.blink.com.tw/board/post/57836/

小米實習 你不知道的事-雙十一戰場 part2

https://www.blink.com.tw/board/post/57927/

人人貸面試分享-產品經理實習生 part1

https://www.blink.com.tw/board/post/57974/

人人貸面試分享-產品經理實習生 part2

https://www.blink.com.tw/board/post/57994/

百度面試分享-搜尋部門數據分析實習生

https://www.blink.com.tw/board/post/57893/

 

 

 

 

 


本文章發表於:實習日誌

加入36

鼓勵作者

目前持有 Blink Coin: Loading..

選擇禮物


愛心

(Coin 10)

幫高調

(Coin 20)

咖啡

(Coin 30)

掌聲鼓勵

(Coin 40)

崇拜眼神

(Coin 50)

驚呆了

(Coin 60)

神人4ni

(Coin 70)

花束

(Coin 100)

鑽石

(Coin 300)

紅寶石

(Coin 500)

藍寶石

(Coin 1000)

黃寶石

(Coin 3000)


送出鼓勵



發表匿名文章不會出現你的大頭圖與名稱,你可暢所欲言,但文章內容務必遵守「佈告欄使用規範」!


回應

送出回應


3 則回應

匿名

2018-12-10 #1

好實用的分享!

1

匿名

2018-12-10 #2

鼓勵了作者

0

匿名

2018-12-11 #3

鼓勵了作者

0

想回應這篇文章嗎?也想發表文章嗎?
馬上登入來發表文章、追蹤作者、收藏文章或回應文章吧!

註冊 登入